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Abstract. In the first part of this paper we present a new family of finite

bounded posets whose clones of monotone operations are not finitely generated.
The proofs of these results are analogues of those in the famous paper of Tardos.

Another interesting family of finite posets from the finite generability point of

view is the family of locked crowns. To decide whether the clone of a locked
crown where the crown is of at least six elements is finitely generated or not

one needs to go beyond the scope of Tardos’s proof. Our investigations in this

direction led to the results in the second part of the paper.
We call a monotone operation ascending if it is greater than or equal to

some projection. We prove that the clones of bounded posets are generated by
certain ascending idempotent monotone operations and the 0 and 1 constant

operations. A consequence of this result is that if the clone of ascending idem-

potent operations of a finite bounded poset is finitely generated, then its clone
is finitely generated as well. We provide an example of a half bounded finite

poset whose clone of ascending idempotent operations is finitely generated but

whose clone is not finitely generated. Another interesting consequence of our
result is that if the clone of a finite bounded poset is finitely generated, then

it has a three element generating set that consists of an ascending idempotent

monotone operation and the 0 and 1 constant operations.
It remains open whether the clones of locked crowns where the crowns have

at least six elements are finitely generated.

1. Introduction

Let F be a set of operations on a set A. We call F a clone if it is closed under
composition and contains the projections. A subset of a clone is called a subclone
if it is closed under composition and contains the projections. On a set A the
subclones of the clone of all operations of A form a lattice, the lattice of clones on
A.

A generating set of a clone F is a subset of F from which every element of F is
obtained by the use of composition and projections. A clone is finitely generated if
it has a finite generating set. In the present paper we study certain clones related
to finite posets. Our main goal is to decide if these clones are finitely generated.

We say that an n-ary operation f on A preserves a k-ary relation R on A, if by
applying f componentwise to any r1 . . . , rn ∈ R the resulting k-tuple also is in R.
Clearly, for any set of relations S on A, the set of operations that preserve all of
the relations of S is a clone. The operations that preserve the one element subsets
of their base sets are called idempotent.

Let P be a partially ordered set, a poset for short. An operation f on the base
set of P is called monotone if f preserves the ordering of P . Then we also say that
P admits the operation f . For a finite poset P , let C(P ) and I(P ) denote the clone
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of monotone operations of P and the clone of idempotent monotone operations of
P , respectively. We call C(P ) the clone of P and I(P ) the idempotent clone of P .

A clone is called maximal if it is a coatom in the lattice of clones. In [1] Rosenberg
proved that there are only six types of maximal clones in the lattice of clones on a
finite set. Later the clones of five types of them were shown to be finitely generated.
The clones of the sixth type are the clones of bounded posets. A poset is bounded
if it has a smallest and a largest element. On the finite generability of clones of
bounded posets only partial results were obtained so far.

An n-ary operation f , n ≥ 3, is a near unanimity operation if it satisfies the
identities

f(x, y, . . . , y) = f(y, x, . . . , y) = · · · = f(y, y, . . . , x) = y.

Notice that the near unanimity operations are idempotent. It is well known that
on a finite set any clone that contains an n-ary near unanimity operation is finitely
generated. In [2] Demetrovics, Hannák and Rónyai proved that by deleting any
convex subset of a finite lattice we obtain a poset whose clone contains a near
unanimity operation. A fence is a finite poset of height 1 whose covering graph is
a path. If F is a fence, then 1 + 2 + F + 2 + 1 is a called a locked fence. Fences
and locked fences also admit a near unanimity operation. It is easy to see that the
class of finite posets whose clones contain near unanimity operations is closed under
retract and finite product. A retract of a poset P is a poset R that is isomorphic
to the image of a unary monotone operation f on P where f2 = f .

It is an open question if besides the finite bounded posets that admit a near
unanimity operations there are other types of finite bounded posets whose clones
are finitely generated. If we drop the boundedness condition in this question, then
the answer is negative. A crown is a poset of height 1 whose covering graph is a
cycle. In [3] Demetrovics and Rónyai proved that the clone of any crown is finitely
generated. It is well known, on the other hand, that the idempotent clone of any
crown contains only projections, hence its clone does not contain a near unanimity
operation.

Figure 1. Posets T, H, and N

In his famous paper [5] Tardos proved that the clone of the eight element poset T
in Figure 1 is not finitely generated. His result was generalized by the third author
of the present paper in [7]. A poset P is series-parallel if the four element poset N
in Figure 1 is not a subposet of P . In [7] it was proved that for a series-parallel
poset P , C(P ) is finitely generated if and only if none of the posets T, H in Figure
1 and the dual of H are retracts of P . A natural question arises: is it true that if
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the clone of a finite poset is finitely generated, then the clone of any of its retracts
is finitely generated. We are not able to answer even the simpler question: is it true
that if T or H is a retract of a finite poset P , then C(P ) is non-finitely generated.

The aim of this paper is to establish the non-finitely generated (or finitely gener-
ated) property for clones of posets in new classes of finite posets. We think that such
results eventually may lead to a characterization of finite posets with non-finitely
generated clones.
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Figure 2. The posets C2,2, C3,2, C2,3, and C3,3

In Section 1 we exhibit an infinite family of finite (bounded) posets which are
not series-parallel and have non-finitely generated clones. Hence we get to new
examples of non-finitely generated maximal clones. Let An be the poset obtained
from the Boolean lattice with n atoms by removing its greatest element, and Bn
the dual of An. Let k denote the k-element antichain and + the linear sum of
posets. Let Cm,n = Am + 2 + Bn. We shall prove that if m,n ≥ 2, then C(Cm,n)
and I(Cm,n) are non-finitely generated. An analogous proof shows that C(2 +Bn)
and I(2 + Bn) where n ≥ 2 are not finitely generated. We note that each of the
posets Cm,n where m,n ≥ 2 retracts onto T , and each of the 2 + Bn where n ≥ 2
retracts onto H.

For any integer k ≥ 2, let Ck denote the 2k-element crown. Let Dk denote the
poset 1 + 2 + Ck + 2 + 1. These posets were introduced by McKenzie in [4] under
the name of locked crowns. To settle the finite generability question for C(Dk) when
k ≥ 3 seems difficult and needs essentially new ideas beyond the scope of the ones
in Tardos’s seminal paper [5]. The poset D2 is series-parallel and hence, by [7], its
clone is non-finitely generated. When k ≥ 3, then Dk is not series-parallel and it
is not known whether C(Dk) is finitely generated or not. Our investigations in this
direction led to the results in Section 2.

We call an n-ary monotone operation f on a poset ascending if it is greater than
or equal to some projection, that is there is an i such that f(x1, . . . , xn) ≥ xi for all
(x1, . . . , xn). We prove that the clones of bounded posets are generated by certain
ascending idempotent monotone operations and the 0 and 1 constant operations. A
consequence of this result is that if the clone of (ascending) idempotent operations
of a finite bounded poset is finitely generated, then its clone is finitely generated
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as well. Another interesting consequence of our result is that if the clone of a finite
bounded poset is finitely generated, then it has a three element generating set that
consists of an ascending idempotent monotone operation and the 0 and 1 constant
operations. Our result does not extend to half bounded finite posets: we prove that
the clone of ascending idempotent operations of H is finitely generated but, as we
mentioned above, the clone of H is not finitely generated.

Our investigations on the clone of Dk led us to seemingly simpler problems.
Unfortunately, these problems turned out to be difficult ones, as well. For example,
we are not able to decide whether the clone of ascending idempotent operations of
1+2+2+1 is finitely generated. Per se, it also remains an open question whether
the clone of Dk, k ≥ 3, is finitely generated.

2. Classes of finite posets with non-finitely generated clones

In this section we shall prove that the clones and the idempotent clones of the
posets Cm,n, An + 2 and 2 + Bn where m,n ≥ 2 are not finitely generated. We
require some basic definitions to proceed.

For two posets O and P , the partial mappings f : O ⇀ P are called P -colorings
of O. If f is a P -coloring of a poset O, then we call the pair (O, f) a P -colored
poset. The P -colored poset (O, f) is called P -extendible if there exists a fully defined
monotone extension of f to O. We say that a poset O′ is contained in an other
poset O if the ordering relation of O′ is contained in the ordering relation of O. A
P -colored poset (O, f) is called a P -obstruction if (O, f) is not extendible, but for
all posets O′ properly contained in O, (O′, f |O′) is extendible. An obstruction is
trivial if it has two elements or, equivalently, has no non-colored elements. We note
that if O is connected, then in the preceding definition it suffices to take those O′

that are obtained from O by deleting a single covering edge. Clearly, every finite
non-extendible colored poset contains an obstruction.

First we describe the Bn-obstructions. By Proposition 1.12 and Theorem 2.2
in [6] each non-trivial Bn-obstruction consists of a single non-colored element that
is covered by the colored elements of the obstruction. By taking into account the
definition of obstruction we have the following.

Theorem 1. Every non-trivial Bn-obstruction consists of a single non-colored el-
ement that is covered by the colored elements of the obstruction. The colors of the
colored elements form an antichain in Bn such that their intersection does not exist
in Bn and the intersection of all but any one of them does exist in Bn.

Observe that the number of colored elements of a non-trivial Bn-obstruction is
at most n, and if the set of colors of a Bn-obstruction is contained in the set of
coatoms of Bn, then it is equal to it. It also follows that the set of colors of any
Bn-obstruction with n-colored elements is equal to the set of coatoms of Bn. We
need the following result, see Theorem 3.3 in [6].
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Figure 3. An example of construction (iii) in Theorem 2

Theorem 2. Let P be a finite poset and B a poset whose obstructions have at most
one non-colored element. Let P ′ = P + B. Then every non-trivial P ′-obstruction
is in one of the following form:

(i) a P -obstruction in which every maximal element is colored,
(ii) a B-obstruction in which every minimal element is colored, or

(iii) it is obtained from a P -obstruction (O, f) such that to each non-colored
maximal element of (O, f) we glue a B-obstruction with a non-colored min-
imal element at its minimal element, possibly identifying some colored max-
imal elements of the same color after the gluing.

We note that the obstructions of the two element antichain {β, β′} are the colored
fences whose only colored elements are their two endpoints colored by β and β′,
respectively. Hence by applying the preceding two theorems and their dual, we
obtain a description of the Cm,n-obstructions.

Corrolary 3. Every non-trivial Cm,n-obstruction is obtained from a colored fence
(O, f) whose endpoints are colored by β and β′ such that to each non-colored maxi-
mal element of (O, f) we glue a non-trivial Bn-obstruction and to each non-colored
minimal element of (O, f) we glue a non-trivial Am-obstruction, possibly identify-
ing some colored maximal elements of the same color and some colored minimal
elements of the same color after the gluing.

Now, we are set to prove the main theorem of the section.

Theorem 4. If m, n ≥ 2, then the clone of Cm,n is non-finitely generated.

Proof. The proof will be an analogue of Tardos’s proof in [5]. For every k ≥ 4
we shall define a relation R such that all [k/2]-ary monotone operations of Cm,n
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preserve R but there is a monotone operation f of Cm,n that does not preserve R.
Then, clearly, for every k ≥ 4, C(Cm,n) is not generated by the [k/2]-ary operations.
Thus, C(Cm,n) is not finitely generated.

x0 x2

w1 w3
w5 w2k−3

xm−1

w2k−1

y
w2 w4 w2k−2

y′

zk+1 zk+2 zk+n−1

z2 zk−1 zkz0 z1 . . .

. . .

. . .

. . .

Figure 4. Poset Q

The relation R is defined by the help of the poset Q in Figure 4. Suppose f is
a partial map from Q to Cm,n whose domain is the set of extremal elements of Q.
For every 0 ≤ j ≤ k we set fj(zi) = f(zi+j) for all 0 ≤ i ≤ k where the indices are
meant modulo k + 1, and fj(x) = f(x) where x is extremal and x 6= z0, . . . , zk.

Now, we define Ri to be the (m+ n+ k + 2)-ary relation that consists of those
partially defined maps f on Q whose domains are the set of extremal elements of Q,
(Q \ {e}, fj) is extendible for every 0 ≤ j ≤ k and covering edge e of Q, and (Q, fi)
is extendible. We note that the Ri are preserved by the monotone operations of
Cm,n. Let R = ∪ki=0Ri. We conceive each element f ∈ R as an (m+n+k+2)-tuple
of the form

(f(x0), . . . , f(xm−1), f(y), f(y′), f(z0), . . . , f(zk+n−1)).

First, we prove that the [k/2]-ary operations of Cm,n preserve R. This follows
from the fact that for any [k/2] elements in R there is an i such that Ri contains
all of these elements. To prove this we show that any element f of R is contained
by k−1 of the Ri. Suppose that f is an element not contained in Ri but contained
in Ri+1. This implies that (Q \ {z0, zk}, fi) is an obstruction. Hence - by the use
of Corollary 3, the second remark after Theorem 1 and its dual - up to symmetry

fi(x0) = α0, . . . , fi(xm−1) = αm−1, fi(y) = β, fi(y
′) = β′,

fi(z1) = · · · = fi(zk−1) = γ0, fi(zk+1) = γ1, . . . , fi(zk+n−1) = γn−1

where the αj are the atoms of Am, {β, β′} = 2 is the two element antichain in the
middle of Cm,n, and the γl are the coatoms of Bn. Since (Q, fi+1) is extendible
fi(zk) ≥ γ′0, where γ′0 is the complement of γ0 in Bn. Moreover, fi(z0) ∈ Bn since
(Q\{(w0, y)}, fi+2) and (Q\{(w2k−1, y

′)}, fi−1) are extendible. Then for all indices
j between i+ 1 and i+ k − 1 modulo k + 1, the colored poset (Q, fj) is extendible
by assigning the values β to w1, . . . , w2k−2j−2, γ

′
0 to w2k−2j−3, β

′ to w2k−2j−4,
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. . . , w2k−2. Thus, any f ∈ R is contained by k − 1 of the Rj . Therefore, for any
choice of [k/2] elements in R there exists an j such that Rj contains them. Thus,
any [k/2]-ary monotone operation of Cm,n preserves R.
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Figure 5. The matrix defining g

Let g be the partial function from C
2(k+1)
m,n to Cm,n defined by the (k+m+ n+

2) × (2k + 3)-matrix in Figure 5 such that for each row g assigns the (2k + 3)-st
component to the 2(k + 1)-tuple determined by the first 2(k + 1) components of
the row. Notice that the first 2(k+ 1) columns of this matrix are in R and the last

column is not in R. We shall prove that the colored poset (C
2(k+1)
m,n , g) is extendible.

Then any extension of g is a monotone 2(k + 1)-ary operation of Cm,n that does
not preserve R, which concludes the proof.

So it remains to prove that (C
2(k+1)
m,n , g) is extendible. Suppose that (C

2(k+1)
m,n , g)

is not extendible. Then it contains an obstruction (O, g′). We invoke Corollary 3,
the first remark after Theorem 1 and its dual. Since g is monotone on its domain,
(O, g′) is obtained by adding some suitable colored elements to a colored fence of
even length whose endpoints are maximal and colored by β and β′, respectively. In
particular, each minimal non-colored element of the fence has a lower cover colored
by αi for all 0 ≤ i ≤ m − 1 and each maximal non-colored element of the fence
has an upper cover colored by a γj for all 0 ≤ j ≤ n − 1. Observe that all rows
with a last component γ0 from the matrix occur in (O, g′) as γ0-colored elements.
Indeed, if the l-th one of them was missing, then the l-th projection of O would
be an extension of g′. Let ai, 1 ≤ i ≤ t, be the sequence of γ0-colored elements in
(O, g′) where ai covers the i-th maximal non-colored element in the fence of non-
colored elements of (O, g′). Let (aj , γ0) the row of the matrix that occurs last in
the sequence (ai, γ0) 1 ≤ i ≤ t. Say, (aj , γ0) is the s-th row of the matrix. Then the
s−1-th and the s+1-th rows of the matrix occur preceding (aj , γ0) in the sequence
(ai, γ0), 1 ≤ i ≤ t. Hence there is a subsequence of consecutive elements of (ai, γ0),
1 ≤ i ≤ t such that none of the s− 1-th, s-th and s+ 1-th rows occur in it except
the first and the last members that coincide with the s− 1-th and s+ 1-th rows in
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some order. Here the indices s− 1, s and s+ 1 are considered modulo k+ 1. Then,
the colored poset whose base poset is O and whose coloring is the restriction of the
(s + k + 1)-th projection to the colored elements of O is a non-extendible colored
poset, a contradiction. �

By changing the proof of the preceding theorem mutatis mutandis we obtain the
following.

Theorem 5. If n ≥ 2, then the clone of 2 + Bn and the clone of its dual are
non-finitely generated.

Extending the partial function g by adding the constant γ0 row to the matrix in
the proof of the preceding theorems, the same proof gives that the partial function
defined in this way is extendible and its extensions are idempotent. This observation
yields the following theorem.

Theorem 6. If m,n ≥ 2, then I(Cm,n), I(An +2) and I(2+Bn) are non-finitely
generated.

3. The clone of ascending idempotent operations

Recall that a monotone operation of a poset is ascending if it is greater than or
equal to some projection. Clearly, the ascending idempotent monotone operations
form a subclone in the clone of a poset. In this section we prove a theorem for
bounded posets that reduces the finite generability of the clone of a poset to the
finite generability of a subclone of ascending idempotent operations. We prove that
a similar theorem does not hold for half bounded posets. Let Dk denote the poset
1+ 2+Ck + 2+ 1 where Ck is the 2k-element crown. We sketch a possible way to
prove that the clone of monotone ascending idempotent operations of Dk, k ≥ 3, is
non-finitely generated. To decide if C(Dk), k ≥ 3, is finitely generated looks further
away. An approach like the ones in Tardos’s paper and in the proof of Theorem 4
does not seem to work since the shapes of the Dk-obstructions are too unwieldy due
to the fact that the shapes of the Ck-obstructions are too unwieldy, cf. Theorem 2.

The clone of the ascending idempotent operations of a poset is called the reduced
idempotent clone of the poset. The reduced idempotent clone of P is denoted by
Ir(P ). The following theorem gives indication how ascending idempotent opera-
tions play a role in the generability of the clone of a bounded poset.

Theorem 7. The clone of a finite bounded poset is generated by its ascending
idempotent operations and the unary constant operations 0 and 1.

Proof. Let P be a finite bounded poset. It suffices to prove that for any monotone
n-ary f : Pn → P there exists an ascending idempotent monotone (n + 2)-ary fI
such that fI(0, 1, x1, . . . , xn) = f(x1, . . . , xn). We define fI as follows:

(1) fI(y1, y2, x1, x2, . . . , xn) :=


1 if y1 6= 0 and y2 = 1,

f(x1, . . . , xn) if y1 = 0 and y2 = 1,

y1 otherwise.

Now it is clear that fI is idempotent, monotone, moreover

fI(0, 1, x1, . . . , xn) = f(x1, . . . , xn) and fI(y1, y2, x1, x2, . . . , xn) ≥ y1.

�
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The preceding theorem has the following corollaries.

Corrolary 8. If the reduced idempotent clone of a finite bounded poset is finitely
generated, then its clone is also finitely generated.

Corrolary 9. If the idempotent clone of a finite bounded poset is finitely generated,
then its clone is also finitely generated.

By Theorem 4, these two corollaries immediately yield the following.

Corrolary 10. The clones Ir(Cm,n) and I(Cm,n), m,n ≥ 2, are non-finitely gen-
erated.

Figure 6. The poset 1 + 2 + 2 + 1

We do not know, if the converse of Corollary 8 is true. The poset 1+2+2+1 is
a candidate for a counterexample. It is well known that 1+2+2+1 admits a 5-ary
near unanimity operation, so its clone and idempotent clone are finitely generated.
On the other hand, no reduced idempotent clone of a finite poset contains a near
unanimity operation. So if the reduced idempotent clone of 1 + 2 + 2 + 1 is yet
finitely generated, the usual near unanimity argument does not work to prove it.
Nevertheless, we are able to prove for a finite bounded poset P that C(P ) is finitely
generated if and only if an appropriate subclone of Ir(P ) is finitely generated. For
a finite bounded poset P , let D(P ) denote the clone generated by the ascending
idempotent operations defined in (1) of the proof of Theorem 7.

Corrolary 11. For a finite bounded poset P , C(P ) is finitely generated if and only
if D(P ) is finitely generated.

Proof. If D(P ) is finitely generated, then C(P ) is finitely generated by the proof
of Theorem 7. For the converse suppose that C(P ) has a finite generating set and
is generated by the operations f1, . . . , fk. Let f1

I , . . . , f
k
I be the corresponding

ascending idempotent operations defined in the proof of Theorem 7.
Now we prove that for any monotone operation g, gI is a composition of f1

I , . . . , f
k
I ,

hence D(P ) is generated by f1
I , . . . , f

k
I . The operation g is a composition of the

operations f1 = f1
I (0, 1, . . . ), . . . , fk = f1

I (0, 1, . . . ) where the . . . within the paren-
theses stands for a suitable number of variables. By replacing 0 with the variable
y1 and 1 with the variable y2 in this composition, we get to a composition g′ of
f1
I , . . . , f

k
I . By the definition in (1), it is now easy to check that g′ = gI . �

Another interesting corollary of Theorem 7 is as follows.

Corrolary 12. If the clone of a finite bounded poset is finitely generated, then it is
generated by three elements: an ascending idempotent operation and the constant
operations 0 and 1.



10 ÁDÁM KUNOS, MIKLÓS MARÓTI, AND LÁSZLÓ ZÁDORI

β β′

γ γ′

1

Figure 7. Poset H with labeling

Proof. Let P be a finite bounded poset such that C(P ) is generated by the oper-
ations f1, . . . , fk. Then let f1

I , . . . , f
k
I be the corresponding ascending idempotent

operations defined in the proof of Theorem 7. Then f1
I , . . . , f

k
I and the 0 and 1 con-

stant operations generate C(P ). Finally, in this generating set we replace f1
I , . . . , f

k
I

by a composition f of them such that f1
I , . . . , f

k
I are obtained from f by identifying

variables. This can be done since f1
I , . . . , f

k
I are idempotent operations. �

Next, we show an example of a half bounded poset for which Corollary 8 does not
hold. We shall prove that the reduced idempotent clone of H is finitely generated.
On the other hand, the clone of H is not finitely generated.

Theorem 13. The reduced idempotent clone of H is finitely generated.

This theorem is an immediate consequence of the next two lemmas. We are
going to prove that any idempotent operation that is greater than or equal to
the first projection is a composition of fourary operations of such a type. The
whole argument works for the other operations of the reduced idempotent clone
analogously. Let Ir1 denote the set of the operations in Ir(H) that are greater
than or equal to the first projection π1, and let Ir1,n be the n-ary part of Ir1. We
say that f ∈ Ir1,n jumps to q at x ∈ Hn if π1(x) < f(x) = q. We define a binary
operation ∨ that is almost a compatible join semilattice operation on H:

x ∨ y =

{
x if {x, y} = {β, β′},
the least upper bound of x and y otherwise.

Obviously, ∨ ∈ Ir1,2. Moreover, ∨ is associative, not commutative, though. For
x ∈ H, let x := (x, . . . , x︸ ︷︷ ︸

n copies

), where n will be clear from the context throughout.

Let z = (z1, . . . , zn) be an arbitrary element of Hn. For any z with z 6≤ γ, γ′

and z1 < 1 we define

gz1(x) :=

{
1 if x ≥ z,
π1(x) otherwise.

For any z with z 6≤ γ′ and z1 < γ we define

gzγ(x) :=


γ if z ≤ x ≤ (z1, 1, . . . , 1),

1 if (γ′, z2, . . . , zn) ≤ x ≤ (γ′, 1, . . . , 1),

π1(x) otherwise.

The operation gzγ′ is defined analogously to gzγ . It is easy to see that gzy ∈ Ir1,n for
every possible values of y and z. Notice that gzy is the smallest operation in Ir1,n

that jumps to y at z.
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Lemma 14. For any f ∈ Ir1,n and x ∈ Hn we have

f(x) =
∨
{gzy(x) : f jumps to y at z }.

Proof. The order of joinands on the right hand side is chosen arbitrarily. On one
hand for each x ∈ Hn if y = f(z) > π1(z), then gzy(x) takes on either the value
f(x) or π1(x). On the other hand, for each x where f jumps gxf(x)(x) = f(x), so

the join on the right hand side of the equality in the claim equals f(x). If f does
not jump at x, then gzy(x) = π1(x) for all of the gzy on the right hand side, and so
the join equals π1(x). �

By Lemma 14, it suffices to exhibit a finite generating set for the operations
gzy to finish our proof. The following lemma yields us a generating set of fourary
operations. We note that the operations gzy are defined only under some stipulations
for the values of the parameters y and z, see definition.

Lemma 15. Let y ∈ H and z = (z1, . . . , zn) ∈ Hn such that the n-ary opera-
tion gzy is defined. Then there exist i, j and k 6= i, j, 1 such that for the 4-tuple
z′ = (z1, zi, zj , zk) and the (n− 1)-tuple z′′ = (z1, . . . , zk−1, zk+1, . . . , zn), the 4-ary

operation gz
′

y and the (n− 1)-ary operation gz
′′

y are defined, and

gzy(x) = g(z1,y,y)
y (x1, g

z′

y (x′), gz
′′

y (x′′))

where x′ = (x1, xi, xj , xk) ∈ H4 and x′′ = (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Hn−1.

Proof. First, we consider the case when y = 1. Then z1 < 1 and z 6≤ γ, γ′. If zi = 1
for some i, then let j = i and choose k to be different from 1 and i. If for all i,
zi 6= 1, then there are two components of z such that one of them equals γ and the
other does γ′. Then we choose i, j and k such that zi = γ, zj = γ′ and k is different
from 1, i, j. In both cases, we take z′ and z′′ as in the claim. Notice that for the
tuples z′ and z′′, gz

′

1 and gz
′′

1 are defined. Moreover,

x ≥ z iff (x′ ≥ z′ and x′′ ≥ z′′).

Thus if x ≥ z, then gz
′

1 (x′) = 1 and gz
′′

1 (x′) = 1, hence

g
(z1,1,1)
1 (x1, g

z′

1 (x′), gz
′′

1 (x′′)) = g
(z1,1,1)
1 (x1, 1, 1) = 1 = gz1(x).

For the case when x 6≥ z, we may assume that x1 < 1, since otherwise both
sides of the equality in the claim equal 1. Now if, for example, x′ 6≥ z′, then
gz

′

1 (x′) = x1 < 1. This yields

g
(z1,1,1)
1 (x1, g

z′

1 (x′), gz
′′

1 (x′′)) = g
(z1,1,1)
1 (x1, x1, g

z′′

1 (x′′)) = x1 = gz1(x),

which concludes our proof for the case y = 1.
For the remaining part of the proof, we assume without loss of generality that

y = γ. Then z1 < γ and z 6≤ γ′. We may assume that z1 = β. Now, there exists
an i such that zi = 1 or zi = γ. We put j = i and choose k different from 1 and i.
We take z′ and z′′ as in the claim. Then gz

′

γ and gz
′′

γ are defined, and

z ≤ x ≤ (β, 1, . . . , 1) iff (z′ ≤ x′ ≤ (β, 1, 1, 1) and z′′ ≤ x′′ ≤ (β, 1, . . . , 1)).

Similarly, (γ′, z2, . . . , zn) ≤ x ≤ (γ′, 1, . . . , 1) iff

((γ′, zi, zj , zk) ≤ x′ ≤ (γ′, 1, 1, 1) and (γ′, z2 . . . , zk−1, zk+1, . . . , zn) ≤ x′′ ≤ (γ′, 1, . . . , 1)).

We split the rest of the proof in three cases.
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In the first case we assume that z ≤ x ≤ (β, 1, . . . , 1). Then we have that

gz
′

γ (x′) = γ and gz
′′

γ (x′) = γ, hence

g(β,γ,γ)
γ (x1, g

z′

γ (x′), gz
′′

γ (x′′)) = g(β,γ,γ)
γ (β, γ, γ) = γ = gzγ(x).

In the second case we assume that (γ′, z2, . . . , zn) ≤ x ≤ (γ′, 1, . . . , 1). Now we

have that gz
′

γ (x′) = 1 and gz
′′

γ (x′′) = 1, and hence

g(β,γ,γ)
γ (x1, g

z′

γ (x′), gz
′′

γ (x′′)) = g(β,γ,γ)
γ (γ′, 1, 1) = 1 = gzγ(x).

For the third case we assume that none of the inequalities z ≤ x ≤ (β, 1, . . . , 1)
and (γ′, z2, . . . , zn) ≤ x ≤ (γ′, 1, . . . , 1) hold. We may assume that x1 6= β′, γ, 1,
since otherwise both sides of the equality in the claim equal x1. Now if, for example,
(x1, . . . , zk−1, zk+1, . . . , zn) ≤ x′′ ≤ (x1, 1, . . . , 1) does not hold, then gz

′′

γ (x′′) = x1.
This yields

g(β,γ,γ)
γ (x1, g

z′

γ (x′), gz
′′

γ (x′′)) = g(β,γ,γ)
γ (x1, g

z′

γ (x′), x1) = x1 = gzγ(x),

which concludes the proof. �

Finally, we delineate some ideas on the question if Ir(Dk) is finitely generated.
We proceed with a straightforward lemma on general clones.

Lemma 16. If a clone is finitely generated, then its homomorphic images are also
finitely generated.

Let P be a finite poset. Since a monotone idempotent ascending operation of
an up-set of P always extends to a monotone ascending idempotent operation of P
and any up-set is preserved by all monotone ascending operations of P , Lemma 16
has the following consequence.

Corrolary 17. If the reduced idempotent clone of a finite poset P is finitely gen-
erated, then the reduced idempotent clone of any up-set of P is finitely generated.

We mentioned above that we are not able to decide whether Ir(1 + 2 + 2 + 1)
is finitely generated. By the preceding corollary - as 1 + 2 + 2 + 1 is an up-set in
Dk - a negative answer would yield that Ir(Dk) is non-finitely generated. We note
that D2 is series-parallel and T is a retract of it, and hence C(D2) is non-finitely
generated. So by Corollary 8, Ir(D2) is non-finitely generated. Nevertheless, it
remains open whether Ir(Dk) and C(Dk) are finitely generated if k ≥ 3.
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